Abstract

Ellerman bombs (EBs) are short-lived and compact structures that are observed well in the wings of the hydrogen H-alpha line. EBs are also observed in the chromospheric CaII lines and in UV continua. H-alpha line profiles of EBs show a deep absorption at the line center and enhanced emission in the line wings. Similar shapes of the line profiles are observed for the CaII IR line at 8542 ang. It is generally accepted that EBs may be considered as compact microflares located in lower solar atmosphere. However, it is still not clear where exactly the emission of EBs is formed in the solar atmosphere. High-resolution spectrophotometric observations of EBs were used for determining of their physical parameters and construction of semi-empirical models. In our analysis we used observations of EBs obtained in the H-alpha and CaII H lines. We also used NLTE numerical codes for the construction of grids of 243 semi-empirical models simulating EBs structures. In this way, the observed emission could be compared with the calculated line spectra. For a specific model we found reasonable agreement between the observed and theoretical emission and thus we consider such model as a good approximation of the EBs atmospheres. This model is characterized by an enhanced temperature in the lower chromosphere and can be considered as a compact structure (hot spot). For the first time the set of two lines H-alpha and CaII H was used to construct semi-empirical models of EBs. Our analysis shows that EBs can be described by a "hot spot" model, with the temperature and/or density increase through a few hundred km atmospheric structure. We confirmed that EBs are located close to the temperature minimum or in the lower chromosphere. Two spectral features, observed simultaneously, significantly strengthen the constraints on a realistic model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call