Abstract

We examine the early phases of two near-limb filament destabilizations involved in coronal mass ejections (CMEs) on 2005 June 16 and July 27, using high-resolution, high-cadence observations made with the Transition Region and Coronal Explorer (TRACE), complemented by coronagraphic observations by the Mauna Loa Solar Observatory (MLSO) and the Solar and Heliospheric Observatory (SOHO). The filaments' heights above the solar limb in their rapid-acceleration phases are best characterized by a height dependence h(t) ∝ tm with m near, or slightly above, 3 for both events. Such profiles are incompatible with published results for breakout, MHD-instability, and catastrophe models. We show numerical simulations of the torus instability that approximate this height evolution in case a substantial initial velocity perturbation is applied to the developing instability. We argue that the sensitivity of magnetic instabilities to initial and boundary conditions requires higher fidelity modeling of all proposed mechanisms if observations of rise profiles are to be used to differentiate between them. The observations show no significant delays between the motions of the filament and of overlying loops: the filaments seem to move as part of the overall coronal field until several minutes after the onset of the rapid-acceleration phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.