Abstract

Flat subduction refers to low-angle (<10°) or sub-horizontal subduction of oceanic slabs. Flat subduction is only recognized in ~10% of present-day subduction zones, but its impact on the behavior of the overriding plate is particularly strong. For example, flat subduction zones are typically associated with stronger earthquakes. The deformation caused by typical flat subduction will transfer from the trench to the overriding continental interior and form a broad magma belt. The formation mechanism of flat subduction has been linked to the relative buoyancy of subducted oceanic plateaus, overthrusting of the overriding plate, hydrodynamic suction, and trench retreat. However, these mechanisms remain debated. This paper systematically analyzes and summarizes previous studies on flat subduction, and outlines the possible geological effects of flat subduction, such as intracontinental orogeny and magmatism. Using examples from numerical modeling, we discuss the possible formation mechanisms. The most important factors that control the formation of flat subduction are associated with overthrusting of the overriding plate and the arrival of an oceanic plateau at the subduction zone. In addition, trench retreat is necessary to enable flat subduction. Hydrodynamic suction contributes to the reduction of the slab dip angle, but is insufficient to form flat subduction. Future numerical modeling of flat subduction should carry out three-dimensional high-resolution thermo-mechanical simulation, considering the influence of crustal eclogitization (negative buoyancy) and mantle serpentinization (positive buoyancy) of oceanic lithosphere, in combination with geological and geophysical data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call