Abstract

AbstractThe evolution of the radiation belts in L‐shell (L), energy (E), and equatorial pitch angle (α 0) is analyzed during the calm 11‐day interval (4–15 March) following the 1 March 2013 storm. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker‐Planck simulations combined with consistent event‐driven scattering modeling from whistler mode hiss waves. Three (L, E, α 0) regions persist through 11 days of hiss wave scattering; the pitch angle‐dependent inner belt core (L ~ <2.2 and E < 700 keV), pitch angle homogeneous outer belt low‐energy core (L > ~5 and E~ < 100 keV), and a distinct pocket of electrons (L ~ [4.5, 5.5] and E ~ [0.7, 2] MeV). The pitch angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for α 0 ~ <60°, E > 100 keV, 3.5 < L < L pp ~ 6. Thus, observed unidirectional flux decays can be used to estimate local pitch angle diffusion rates in that region. Top‐hat distributions are computed and observed at L ~ 3–3.5 and E = 100–300 keV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call