Abstract

The small-scale magnetic flux ropes (of duration ranging from a few minutes to a few hours) in the solar wind have the typical topology of winding field lines around a central axis, which is similar to the large-scale flux ropes, i.e., magnetic clouds. However, accumulating evidence suggests that their plasma characteristics, origin, formation mechanism and evolution are different from those of large-scale flux ropes. The small-scale flux ropes are intensively studied in recent years, since they affect particle transport and energization, and are considered as the potential source of local acceleration. The Grad-Shafranov reconstruction technique is a tool to reconstruct the two and a half dimensional field structure based on in-situ measurements captured by an observing platform moving past it. In this study, we reconstruct the flux rope structures in two events using the Grad-Shafranov reconstruction approach. In one event, a twin flux rope structure at 1 AU occurring on 2002 February 1 and two following single flux rope structures are identified behind an interplanetary shock. In the other event, we reconstruct the flux rope structures occurring on 1998 March 25 and 26 at 1 AU in the ambient solar wind. The associated energetic particle signatures and the possible origin of these flux rope structures are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call