Abstract

Aims. The phase scintillation of the European Space Agency's (ESA) Venus Express (VEX) spacecraft telemetry signal was observed at X-band (\lambda = 3.6 cm) with a number of radio telescopes of the European VLBI Network (EVN) in the period 2009-2013. Methods. We found a phase fluctuation spectrum along the Venus orbit with a nearly constant spectral index of -2.42 +/-0.25 over the full range of solar elongation angles from 0{\deg} to 45{\deg}, which is consistent with Kolmogorov turbulence. Radio astronomical observations of spacecraft signals within the solar system give a unique opportunity to study the temporal behaviour of the signal's phase fluctuations caused by its propagation through the interplanetary plasma and the Earth's ionosphere. This gives complementary data to the classical interplanetary scintillation (IPS) study based on observations of the flux variability of distant natural radio sources. Results. We present here our technique and the results on IPS. We compare these with the total electron content (TEC) for the line of sight through the solar wind. Finally, we evaluate the applicability of the presented technique to phase-referencing Very Long Baseline Interferometry (VLBI) and Doppler observations of currently operational and prospective space missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.