Abstract

We investigate the observationally-induced free algebra approach for constructing computational monads in the categories of classical domain theory. Our investigation yields that the free algebra construction exists for all finitary algebraic signatures and computational prototypes. We furthermore investigate the classical powerdomain constructions in the observationally-induced approach. For the Hoare, Smyth and probabilistic powerdomain constructions we build on established results, showing that they can be recovered observationally-induced. However, the Plotkin powerdomain turns out to be more problematic. Here we show that with the obvious prototype algebra, Heckmanns algebra A, one does not get the classical Plotkin powerdomain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.