Abstract

Recent advances have made it possible to obtain two-dimensional line-of-sight magnetic field maps of the solar corona from spectropolarimetric observations of the Fe XIII 1075 nm forbidden coronal emission line. Together with the linear polarization measurements that map the azimuthal direction of the coronal magnetic field projected in the plane of the sky containing Sun center, these coronal vector magnetograms allow for direct and quantitative observational testing of theoretical coronal magnetic field models. This paper presents a study testing the validity of potential-field coronal magnetic field models. We constructed a theoretical coronal magnetic field model of active region AR 10582 observed by the SOLARC coronagraph in 2004 by using a global potential field extrapolation of the synoptic map of Carrington Rotation 2014. Synthesized linear and circular polarization maps from thin layers of the coronal magnetic field model above the active region along the line of sight are compared with the observed maps. We found that the observed linear and circular polarization signals are consistent with the synthesized ones from layers located just above the sunspot of AR 10582 near the plane of the sky containing the Sun center.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call