Abstract

Space telescope observations of massive black holes during their formation may be key to understanding the origin of supermassive black holes and high-redshift quasars. To create diagnostics for their detection and confirmation, we study a simulation of a nascent massive, so-called direct-collapse, black hole that induces a wave of nearby massive metal-free star formation, unique to this seeding scenario and to very high redshifts. Here we describe a series of distinct colors and emission line strengths, dependent on the relative strength of star formation and black hole accretion. We predict that the forthcoming James Webb Space Telescope might be able to detect and distinguish a young galaxy that hosts a direct-collapse black hole in this configuration at redshift 15 with as little as a 20,000-second total exposure time across four filters, critical for constraining supermassive black hole seeding mechanisms and early growth rates. We also find that a massive seed black hole produces strong, H$_2$-dissociating Lyman-Werner radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call