Abstract

In this work, we investigate the optical appearance of qualitatively new observational features of accretion disk images around the charged rotating traversable wormhole (TWH) space-time for different spin, throat, and charge values. To accomplish this, we first consider the Hamilton–Jacobi method to derive the geodesic equations for the motion of photons and study the effects of parameters on the photon orbit in the observer’s sky. We found that each parameter affects the size and shape of the wormhole (WH) shadow and flatness is observed in the shadow because of spin and other parameters. To produce shadow images of sufficient visual quality but within manageable computational times, we adopt the ray-trace procedure and characterize the significant features of light trajectories on the observer’s screen, depending on the interaction between the space-time structure and the accretion disk. In addition, we consider the static spherically symmetric accretion flow model to observe the specific intensity around the traversable WH space-time geometry. It is found that the intensity and positions of the photon ring vary with respect to the involved parameters. In future observation, this type of study may provide a fertile playground to test the nature of compact objects, specifically the WH in the strong-field regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call