Abstract

The Thomas-Fermi approach to galaxy structure determines selfconsistently the fermionic warm dark matter (WDM) gravitational potential given the distribution function f(E). This framework is appropriate for macroscopic quantum systems: neutron stars, white dwarfs and WDM galaxies. Compact dwarf galaxies follow from the quantum degenerate regime, while dilute and large galaxies from the classical Boltzmann regime. We find analytic scaling relations for the main galaxy magnitudes as halo radius r_h, mass M_h and phase space density. The observational data for a large variety of galaxies are all well reproduced by these theoretical scaling relations. For the compact dwarfs, our results show small deviations from the scaling due to quantum macroscopic effects. We contrast the theoretical curves for the circular velocities and density profiles with the observational ones. All these results are independent of any WDM particle physics model, they only follow from the gravity interaction of the WDM particles and their fermionic nature. The theory rotation and density curves reproduce very well for r < r_h the observations of 10 different and independent sets of data for galaxy masses from 5x10^9 Msun till 5x10^{11} Msun. Our normalized circular velocity curves turn to be universal functions of r/r_h for all galaxies and reproduce very well the observational curves for r < r_h. Conclusion: the Thomas-Fermi approach correctly describes the galaxy structures (Abridged).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.