Abstract

We study the effects of an annular gap induced by an embedded protoplanet on disk scattered light images and the infrared spectral energy distribution (SED). We find that the outer edge of a gap is brighter in the scattered light images than a similar location in a gap-free disk. The stellar radiation that would have been scattered by material within the gap is instead scattered by the disk wall at the outer edge of the gap, producing a bright ring surrounding the dark gap in the images. Given sufficient resolution, such gaps can be detected by the presence of this bright ring in scattered light images. A gap in a disk also changes the shape of the SED. Radiation that would have been absorbed by material in the gap is instead reprocessed by the outer gap wall. This leads to a decrease in the SED at wavelengths corresponding to the temperature at the radius of the missing gap material, and to a corresponding flux increase at longer wavelengths corresponding to the temperature of the outer wall. We note, however, that the presence of an annular gap does not change the bolometric IR flux; it simply redistributes the radiation previously produced by material within the gap to longer wavelengths. Although it will be difficult on the basis of the SED alone to distinguish between the presence of a gap and other physical effects, the level of changes can be sufficiently large to be measurable with current instruments (e.g., Spitzer).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.