Abstract

Sea surface temperature (SST) is a fundamental physical variable for understanding, quantifying and predicting complex interactions between the ocean and the atmosphere. Such processes determine how heat from the sun is redistributed across the global oceans, directly impacting large- and small-scale weather and climate patterns. The provision of daily maps of global SST for operational systems, climate modelling and the broader scientific community is now a mature and sustained service coordinated by the Group for High Resolution Sea Surface Temperature (GHRSST) and the CEOS SST Virtual Constellation (CEOS SST-VC). Data streams are shared, indexed, processed, quality controlled, analyzed, and documented within a Regional/Global Task Sharing (R/GTS) framework, which is implemented internationally in a distributed manner. Products rely on a combination of low-Earth orbit infrared and microwave satellite imagery, geostationary orbit infrared satellite imagery, and in situ data from moored and drifting buoys, Argo floats, and a suite of independent, fully characterized and traceable in situ measurements for product validation (Fiducial Reference Measurements, FRM). Research and development continues to tackle problems such as instrument calibration, algorithm development, diurnal variability, derivation of high-quality skin and depth temperatures, and areas of specific interest such as the high latitudes and coastal areas. In this white paper, we review progress versus the challenges we set out 10 years ago in a previous paper, highlight remaining and new research and development challenges for the next 10 years (such as the need for sustained continuity of passive microwave SST using a 6.9 GHz channel), and conclude with needs to achieve an integrated global high-resolution SST observing system, with focus on satellite observations exploited in conjunction with in situ SSTs. The paper directly relates to the theme of Data Information Systems and also contributes to Ocean Observing Governance and Ocean Technology and Networks within the OceanObs2019 objectives. Applications of SST contribute to all the seven societal benefits, covering Discovery; Ecosystem Health & Biodiversity; Climate Variability & Change; Water, Food, & Energy Security; Pollution & Human Health; Hazards and Maritime Safety; and the Blue Economy.

Highlights

  • Sea surface temperature (SST) is a fundamental variable for understanding, monitoring and predicting fluxes of heat, momentum and gases at a variety of scales that determine complex interactions between the atmosphere and ocean

  • Satellite measurements rely on in situ data for retrieval and validation and both sources of SST are used in many applications, such as climate and weather model boundary conditions (Folland, 2005; Kennedy et al, 2012) and SST analysis products (e.g., Roberts-Jones et al, 2012)

  • Dependence on prior information should be minimized wherever reliable classification can be made from the satellite observations themselves, which is aided by new SST sensors that provide measurements in more bands, and at higher spatial and temporal resolution

Read more

Summary

Introduction

Sea surface temperature (SST) is a fundamental variable for understanding, monitoring and predicting fluxes of heat, momentum and gases at a variety of scales that determine complex interactions between the atmosphere and ocean. Satellite measurements rely on in situ data for retrieval and validation (see section “Improved Methods of Validation”) and both sources of SST are used in many applications, such as climate and weather model boundary conditions (Folland, 2005; Kennedy et al, 2012) and SST analysis products (e.g., Roberts-Jones et al, 2012).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call