Abstract

The observed baryon asymmetry, as well as potentially an asymmetry in the dark matter sector, can be produced through dissipative particle production during inflation. A distinctive feature of this mechanism is the generation of matter isocurvature perturbations that are fully (anti-)correlated with the dominant adiabatic curvature perturbations. We show that chaotic warm inflation models yield anti-correlated isocurvature modes that may partially or even completely screen the contribution of primordial gravity waves to the CMB temperature power spectrum. The tensor-to-scalar ratio inferred from the latter may thus be parametrically smaller than the one deduced from B-mode polarization maps, which is particularly relevant in the light of the recently announced results of the BICEP2 experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call