Abstract

Tropical cyclones (TCs) cause severe natural hazards and drive intense upper ocean cooling through a series of oceanic and atmospheric physical processes, including vertical mixing and upwelling. Among these processes, TC-induced warming of near-surface waters in the open ocean has rarely been noted. This study provides a detailed analysis of upper ocean responses to 30 TC events observed by two buoys in the western North Pacific between 2016 and 2021. Supplemented with numerical experiments, we suggest that downwelling frequently occurs at the periphery of upwelling regions (around the radius of the 34 knot wind speed) following the passage of a TC. Downwelling is identified via pronounced warm anomalies under a shallow mixed layer depth, and its dynamics are attributed to negative wind stress curl and current-induced convergence. These findings highlight the important role played by TC-induced downwelling and offer insights for reconsidering the influence of TCs on biogeochemical processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.