Abstract

Anthropogenic aerosols enhance cloud reflectivity by increasing the number concentration of cloud droplets, leading to a cooling effect on climate known as the indirect aerosol effect. Observational support for this effect is based mainly on evidence that aerosol number concentrations are connected with droplet concentrations, but it has been difficult to determine the impact of these indirect effects on radiative forcing. Here we provide observational evidence for a substantial alteration of radiative fluxes due to the indirect aerosol effect. We examine the effect of aerosols on cloud optical properties using measurements of aerosol and cloud properties at two North American sites that span polluted and clean conditions-a continental site in Oklahoma with high aerosol concentrations, and an Arctic site in Alaska with low aerosol concentrations. We determine the cloud optical depth required to fit the observed shortwave downward surface radiation. We then use a cloud parcel model to simulate the cloud optical depth from observed aerosol properties due to the indirect aerosol effect. From the good agreement between the simulated indirect aerosol effect and observed surface radiation, we conclude that the indirect aerosol effect has a significant influence on radiative fluxes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.