Abstract

Abstract Tropical deep convection exhibits complex organization over a wide range of scales. This study investigates the relationships between the spatial organization of deep convection and the large-scale atmospheric state. By using several satellite datasets and reanalyses, and by defining a simple diagnostic of convective aggregation, relationships between the degree of convective aggregation and the amount of water vapor, turbulent surface fluxes, and radiation are highlighted above tropical oceans. When deep convection is more aggregated, the middle and upper troposphere are drier in the convection-free environment, turbulent surface fluxes are enhanced, and the low-level and midlevel cloudiness is reduced in the environment. Humidity and cloudiness changes lead to a large increase in outgoing longwave radiation. Cloud changes also result in reduced reflected shortwave radiation. Owing to these opposing effects, the sensitivity of the radiative budget at the top of the atmosphere to convective aggregation turns out to be weak, but the distribution of radiative heating throughout the troposphere is affected. These results suggest that feedbacks between convective aggregation and the large-scale atmospheric state might influence large-scale dynamics and the transports of water and energy and, thus, play a role in the climate variability and change. These observational findings are qualitatively consistent with previous cloud-resolving model results, except for the effects on cloudiness and reflected shortwave radiation. The proposed methodology may be useful for assessing the representation of convective aggregation and its interaction with the large-scale atmospheric state in various numerical models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.