Abstract

Gap-opening planets can generate dust-trapping vortices that may explain some of the latest discoveries of high-contrast crescent-shaped dust asymmetries in transition discs. While planet-induced vortices were previously thought to have concentrated shapes, recent computational work has shown that these features naturally become much more elongated in the gas when simulations account for the relatively long timescale over which planets accrete their mass. In this work, we conduct two-fluid hydrodynamical simulations of vortices induced by slowly-growing Jupiter-mass planets in discs with very low viscosity ($\alpha = 3 \times 10^{-5}$). We simulate the dust dynamics for four particle sizes spanning 0.3 mm to 1 cm in order to produce synthetic ALMA images. In our simulations, we find that an elongated vortex still traps dust, but not directly at its center. With a flatter pressure bump and disruptions from the planet's overlapping spiral density waves, the dust instead circulates around the vortex. This motion (1) typically carries the peak off-center, (2) spreads the dust out over a wider azimuthal extent $\geq 180^{\circ}$, (3) skews the azimuthal profile towards the front of the vortex, and (4) can also create double peaks in newly-formed vortices. In particular, we expect that the most defining observational signature, a peak offset of more than $30^{\circ}$, should be detectable $>30\%$ of the time in observations with a beam diameter of at most the planet's separation from its star.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.