Abstract

Determining the energy scale of inflation is crucial to understand the nature of inflation in the early Universe. We place observational constraints on the energy scale of the observable part of the inflaton potential by combining the 7-year Wilkinson Microwave Anisotropy Probe data with distance measurements from the baryon acoustic oscillations in the distribution of galaxies and the Hubble constant measurement. Our analysis provides an upper limit on this energy scale, 2.3 \times 10^{16} GeV at 95% confidence level. Moreover, we forecast the sensitivity and constraints achievable by the Planck experiment by performing Monte Carlo studies on simulated data. Planck could significantly improve the constraints on the energy scale of inflation and on the shape of the inflaton potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call