Abstract
The typical spectra of gamma-ray bursts (GRBs) are discussed in the context of the compactness problem for GRB sources and how it is resolved in the popular fireball model. In particular, observational (model-independent) constraints on the collimation of the gamma-rays and the dependence of the collimation angle on the photon energy are considered. The fact that the threshold for the creation of e−e+ pairs depends on the angle between the momenta of the annihilating photons in the GRB source provides an alternative solution to the compactness problem. A new approach to explaining GRBs, taking into account the angular dependence for pair creation, is proposed, and the main features of a scenario describing a GRB source with a total (photon) energy smaller or of the order of 1049 erg are laid out. Thus, we are dealing with an alternative to an ultra-relativistic fireball, if it turns out (as follows from observations) that all “long” GRBs are associated with normal (not peculiar) core-collapse supernovae. The effects of radiation pressure and the formation of jets as a consequence of even a small amount of anisotropy in the total radiation field in a (compact) GRB source are examined in this alternative model. Possible energy-release mechanisms acting in regions smaller or of the order of 108 cm in size (a compact model for a GRB) are discussed. New observational evidence for such compact energy release in the burst source is considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.