Abstract

We constrain two non-flat time-evolving dark energy cosmological models by using Hubble parameter data, Type Ia supernova apparent magnitude measurements, and baryonic acoustic oscillation peak length scale observations. The inclusion of space curvature as a free parameter in the analysis results in a significant broadening of the allowed range of values of the parameter that governs the time evolution of the dark energy density in these models. While consistent with the “standard” spatially-flat ΛCDM cosmological model, these data are also consistent with a range of mildly non-flat, slowly time-varying dark energy models. After marginalizing over all other parameters, these data require the averaged magnitude of the curvature density parameter |Ω k0|≲0.15 at 1σ confidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.