Abstract

We analyze a fully geometric approach to dark energy in the framework of [Formula: see text] theories of gravity, where [Formula: see text] is the Ricci curvature scalar and [Formula: see text] is the Gauss–Bonnet topological invariant. The latter invariant naturally exhausts, together with [Formula: see text], the whole curvature content related to curvature invariants coming from the Riemann tensor. In particular, we study a class of [Formula: see text] models with power law solutions and find that, depending on the value of the geometrical parameter, a shift in the anisotropy peaks position of the temperature power spectrum is produced, as well as an increasing in the matter power spectrum amplitude. This fact could be extremely relevant to fix the form of the [Formula: see text] model. We also perform an MCMC analysis using both Cosmic Microwave Background data by the Planck (2015) release and the Joint Light-Curve Analysis of the SNLS–SDSS collaborative effort, combined with the current local measurements of the Hubble value, [Formula: see text], and galaxy data from the Sloan Digital Sky Survey (BOSS CMASS DR11). We show that such a model can describe the CMB data with slightly high [Formula: see text] values, and the prediction on the amplitude matter spectrum value is proved to be in accordance with the observed matter distribution of the universe. At the same time, the value constrained for the geometric parameter implies a density evolution of such a component that is growing with time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call