Abstract

Abstract We confront massive Proca-Nuevo gravity with cosmological observations. The former is a non-linear theory involving a massive spin-1 field, that can be extended incorporating operators of the Generalized Proca class, and when coupled to gravity it can be covariantized in a way that exhibits consistent and ghost-free cosmological solutions, without experiencing instabilities and superluminalities at the perturbative level. When applied at a cosmological framework it induces extra terms in the Friedmann equations, however due to the special non-linear construction the field is eliminated in favor of the Hubble function. Thus, the resulting effective dark energy sector is dynamical, however it contains the same number of free parameters with the ΛCDM concordance model. We use data from Supernovae Ia (SNIa) and Cosmic Chronometers (CC) observations and we construct the corresponding likelihood-contours for the free parameters. Interestingly enough, application of various information criteria, such as AIC, BIC and DIC, shows that the scenario of massive Proca-Nuevo gravity, although having exactly the same number of free parameters with ΛCDM paradigm, it is more efficient in fitting the data. Finally, the reconstructed dark-energy equation-of-state parameter shows statistical compatibility with the model-independent, data-driven reconstructed one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call