Abstract

An important parameter in the theory of hot accretion flows around black holes is δ, which describes the fraction of “viscously” dissipated energy in the accretion flow that goes directly into heating electrons. For a given mass accretion rate, the radiative efficiency of a hot accretion flow is determined by δ. Unfortunately, the value of δ is hard to determine from first principles. The recent Event Horizon Telescope Collaboration (EHTC) results on M87* and Sgr A* provide us with a different way of constraining δ. By combining the mass accretion rates in M87* and Sgr A* estimated by the EHTC with the measured bolometric luminosities of the two sources, we derive good constraints on the radiative efficiencies of the respective accretion flows. In parallel, we use a theoretical model of hot magnetically arrested disks (MADs) to calculate the expected radiative efficiency as a function of δ (and accretion rate). By comparing the EHTC-derived radiative efficiencies with the theoretical results from MAD models, we find that Sgr A* requires δ ≳ 0.3. A similar comparison in the case of M87* gives inconclusive results as there is still a large uncertainty in the accretion rate in this source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call