Abstract

A nova outburst is one consequence of the accretion of hydrogen rich material onto a white dwarf in a close binary system. The strong electron degeneracy of a massive white dwarf drives the temperatures in the nuclear burning region to values exceeding 108K under all circumstances. As a result, a major fraction of the CNO nuclei in the envelope are transformed into e{sup +}-decay nuclei, which constrains the nuclear energy generation and yields non-solar CNO isotopic abundance ratios. In addition, the observations demonstrate that white dwarf core material is dredged up into the accreted layers and these nuclei are the catalysts for producing peak rates of energy generation that can exceed 10{sup 16} erg gm{sup -1}s{sup -1}. Observations show that there are two compositional classes of novae, one that occurs on a carbon-oxygen white dwarf and the other that occurs on an oxygen-neon-magnesium white dwarf.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.