Abstract
The fire whirl generated by burning a pool fire in a vertical shaft with a single corner gap of appropriate width was studied using a high-speed camera. A 7 cm diameter pool propanol fire with heat release rate 1.6 kW in free space was burnt inside a 145 cm tall vertical shaft model with gap widths lying between 2 cm and 16 cm. The flame height was between 0.25 m and 0.85 m for different gap widths. Photographs taken using a high-speed camera at critical times of swirling motion development were used to compare with those taken using a normal camera. From the experimental observations on flame swirling by a high-speed camera, stages for generating the fire whirl were identified much more accurately. Two flame vortex tubes moving over the horizontal burning surface of the liquid pool were observed. Based on these observations a set of more detailed schematic diagrams on the swirling motion was constructed. From the observed flame heights under different gap widths and using three assumptions on the variation of air entrainment velocity with height, an empirical expression relating the burning rate with flame height and the corner gap width was derived from the observation with high-speed camera. The correlation expression of the burning rate of the pool fire obtained would be useful in fire safety design in vertical shafts of tall buildings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.