Abstract

A number of experimental studies have inferred the existence of packets of inclined, hairpin-like vortices in wall turbulence on the basis of observations made in two-dimensional x-y planes using visualization and particle image velocimetry (PIV). However, there are very few observations of hairpins in existing three-dimensional studies made using direct numerical simulation (DNS), and no such study claims to have revealed packets. We demonstrate, for the first time, the existence of hairpin vortex packets in DNS of turbulent flow. The vortex packet structure found in the present study at low Reynolds number, Re_b = 300, is consistent with and substantiates the observations and the results from two-dimensional PIV measurements at higher Reynolds numbers in channel, pipe and boundary layer flows. Thus, the evidence supports the view that vortex packets are a universal feature of wall turbulence, independent of effects due to boundary layer trips or critical conditions in the aforementioned numerical studies. Visualization of the DNS velocity field and vortices also shows the close association of hairpin packets with long low-momentum streaks and the regions of high Reynolds shear stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.