Abstract

Ultrafast vibrational spectroscopy is employed to obtain real-time structural information on energy transport in double-walled light-harvesting nanotubes at room temperature, stabilized in a host matrix to mimic the rigid scaffolds of natural light-harvesting systems. We observe evidence of a low-frequency vibrational mode at 315 cm-1, which transfers excitons from the outer wall of the nanotubes to a crossing point through which energy transfer to the inner wall can occur. This mode is furthermore absent in solution phase. Importantly, the coherence of this mode is not transferred to the inner wall upon energy transfer and is only present on the outer wall's excited-state energy surface, highlighting that complete energy transfer between the outer and inner walls does not take place. Isolation of the individual walls of the nanotubes provides evidence that this mode corresponds to a supramolecular motion of the nanotubes. Our results emphasize the importance of the solid-state environment in modulating vibronic coupling and directing energy transfer in molecular light-harvesting systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.