Abstract

We investigate tunneling through a resonant level formed in a carbon nanotube quantum dot contacted by resistive metal wires. These contacts create a dissipative environment for the electrons tunneling across the nanotube, thus suppressing the tunneling rate. We study the shape of the resonant peak in the nanotube conductance, with the expectation that the peak width and height, both dependent on the tunneling rate, will be suppressed. Instead, we find that the behavior crucially depends on the ratio of the tunneling rates from the resonant level to the two contacts. We discuss the implication of our findings for a boundary quantum phase transition in this system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.