Abstract

The tetrameric lectin from Glycine max (soybean) (SBA) has been shown to cross-link and precipitate with N-linked multiantennary complex type oligosaccharides containing nonreducing terminal Gal residues (Bhattacharyya, L., Haraldsson, M., & Brewer, C. F. (1988) Biochemistry 27, 1034-1041). In the present study, negative stain electron micrographs of the precipitates of SBA with a series of naturally occurring and synthetic multiantennary carbohydrates with terminal Gal or GalNAc residues show the presence of highly ordered cross-linked lattices for many of the complexes. The precipitates of SBA with a "bisected" and "nonbisected" N-linked biantennary complex type oligosaccharide containing Gal residues at the nonreducing termini show similar two-dimensional patterns. However, the pattern observed for the precipitates of a tetraantennary complex type oligosaccharide with SBA is distinct from those of the two biantennary carbohydrates. Furthermore, the precipitates formed between the lectin and a synthetic O-linked biantennary ("cluster") glycoside with terminal GalNAc residues show a pattern that is different from those above. Four biantennary pentasaccharide analogs of the blood group I antigen containing beta-LacNAc moieties at the 2.3-, 2.4-, 2.6-, and 3.6-positions of the core Gal also showed ordered patterns in their precipitates with SBA. X-ray crystallographic data and mixed quantitative precipitation profiles of binary mixtures of the four analogs demonstrate that each analog possesses a unique cross-linked lattice with the protein.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call