Abstract

The intrinsic magnetic topological insulator MnBi2Te4 has attracted significant interest recently as a promising platform for exploring exotic quantum phenomena. Here we report that, when atomically thin MnBi2Te4 is deposited on a substrate such as silicon oxide or gold, there is a very strong mechanical coupling between the atomic layer and the supporting substrate. This is manifested as an intense low-frequency breathing Raman mode that is present even for monolayer MnBi2Te4. Interestingly, this coupling turns out to be stronger than the interlayer coupling between the MnBi2Te4 atomic layers. We further found that these low-energy breathing modes are highly sensitive to sample degradation, and they become drastically weaker upon ambient air exposure. This is in contrast to the higher energy optical phonon modes which are much more robust, suggesting that the low-energy Raman modes found here can be an effective indicator of sample quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.