Abstract

Ultrasonic guided wave (UGW) is a promising technique for nondestructive testing of pre-stressed multi-wire structures, such as steel strand and wire rope. The understanding of the propagation behaviours of UGW in these structures is a priority to applications. In the present study, first the properties of the UGW missing frequency band in the pre-stressed seven-wire steel strand is experimentally examined. The high correlation between the observed results and the previously published findings proves the feasibility of the magnetostrictive sensor (MsS) based testing method. The evolution of missing frequency band of UGW in slightly tensioned steel strand is discussed. Two calibration equations representing the relationship between the missing band parameters and the tensile force are given to derive a new tensile force measurement method, which is capable of measuring an incremental of stress of approximately 3MPa. Second, the effects of tensile force on the UGW propagation behaviours in three types of complicated steel wire ropes are alternatively investigated based on the short time Fourier transform (STFT) results of the received direct transmission wave (DTW) signals. The observed inherent missing frequency band of the longitudinal mode UGW in the pre-stressed steel wire rope and its shifting to a higher frequency range as the increases of the applied tensile force are reported for the first time. The influence of applied tensile force on the amplitude of the DTW signal and the unique UGW energy jump behaviour observed in a wire rope of 16.0mm, 6×Fi(29)+IWRC are also investigated, despite the fact that they cannot yet be explained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call