Abstract
The discovery of topological phases of matter, initially driven by theoretical advances in quantum condensed matter physics, has been recently extended to classical wave systems, reaching out to a wealth of novel potential applications in signal manipulation and energy concentration. Despite the fact that wave propagation in many realistic media (metals at optical frequencies, polymers at ultrasonic frequencies) is inherently dispersive, topological wave transport in photonic and phononic crystals has so far been limited to ideal situations and proof-of-concept experiments involving dispersionless media. Here, we report the first experimental demonstration of topological edge states in a classical water wave system supporting highly dispersive wave propagation, in the intermediate regime of gravity-capillary waves. We use a stochastic method to rigorously take into account the inherent dispersion and devise a water wave crystal insulator supporting valley-selective transport at topological domain walls. Our measurements, performed with a high-speed camera under stroboscopic illumination, unambiguously demonstrate the possibility of valley-locked transport of water waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.