Abstract

We investigated the local electronic structures of oxidation-controlled TiN thin films for preparation of photocatalytic titania using soft X-ray absorption spectroscopy. It is shown that the TiN layers on top of oxides, such as HfO2 or ZnO, are easily oxidized by heat during postdeposition annealing (PDA) so as to form nitrogen-incorporated titania (N-TiO2). The local structures of the oxidized films evolved significantly depending on the bottom oxide and the PDA conditions; when TiN was deposited on HfO2, which is less reactive than ZnO, PDA at 700 °C stabilized a mixture of rutile and anatase phases under almost any gas (N2 or O2) environments. On the other hand, when TiN was deposited on ZnO, which is reactive enough to oxidize the TiN layers substantially, the PDA resulted in a rich phase diagram according to the gas environment: under N2 environment, an anatase local structure is dominant, whereas under O2 environment, a rutile or yet another local structure with a high symmetry, for example, perovs...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.