Abstract

We report the first interferometric observations of the dynamics of electron-ion cavitation of relativistically self-focused intense 4 TW, 400 fs laser pulse in a He gas jet. The electron density in a channel 1 mm long and 30 μm in diameter drops by a factor of approximately 10 from the maximum value of ∼8×1019 cm−3. A high radial velocity of the plasma expansion, ∼3.8×108 cm/s, corresponding to an ion energy of about 300 keV, is observed. The total energy of fast ions is estimated to be 6% of the laser pulse energy. The high-velocity radial plasma expulsion is explained by a charge separation due to the strong ponderomotive force. This experiment demonstrates a new possibility for direct transmission of a significant portion of the energy of a laser pulse to ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.