Abstract

A 632.8-nm radiation-induced change in the conductivity of a regular domain structure (RDS) formed in a 5% MgO:LiNbO3 crystal has been detected for the first time. As a result, the relaxation rate for the Bragg diffraction efficiency on the RDS, which is observed after the application of an external electric field, increases with the intensity of a probe beam. This dependence is linear in the initial stage of relaxation caused by the screening of the external field because of the redistribution of charges over tilted conductive domain walls of the RDS. For the probe beam with an intensity of 49 mW/mm2, the induced effective conductivity of the RDS, which is estimated as σeff = 3.5×10−9Ω−1m−1, is more than four orders of magnitude higher than the dark conductivity of the single-domain MgO:LiNbO3 sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.