Abstract

We report experiments on gravity-capillary wave turbulence on the surface of a fluid. The wave amplitudes are measured simultaneously in time and space by using an optical method. The full space-time power spectrum shows that the wave energy is localized on several branches in the wave-vector-frequency space. The number of branches depends on the power injected within the waves. The measurement of the nonlinear dispersion relation is found to be well described by a law suggesting that the energy transfer mechanisms involved in wave turbulence are restricted not only to purely resonant interaction between nonlinear waves. The power-law scaling of the spatial spectrum and the probability distribution of the wave amplitudes at a given wave number are also measured and compared to the theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.