Abstract

AbstractUsing the helium nanodroplet isolation setup at the ultrabright free‐electron laser source FELIX in Nijmegen (BoHeNDI@FELIX), the intermolecular modes of water dimer in the frequency region from 70 to 550 cm−1 were recorded. Observed bands were assigned to donor torsion, acceptor wag, acceptor twist, intermolecular stretch, donor torsion overtone, and in‐plane and out‐of‐plane librational modes. This experimental data set provides a sensitive test for state‐of‐the‐art water potentials and dipole moment surfaces. Theoretical calculations of the IR spectrum are presented using high‐level quantum and approximate quasiclassical molecular dynamics approaches. These calculations use the full‐dimensional ab initio WHHB potential and dipole moment surfaces. Based on the experimental data, a considerable increase of the acceptor switch and a bifurcation tunneling splitting in the librational mode is deduced, which is a consequence of the effective decrease in the tunneling barrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call