Abstract
We report the chemical vapor deposition (CVD) growth, characterization, and low-temperature magnetotransport of 1T phase multilayer single-crystalline VTe2 nanoplates. The transport studies reveal that no sign of intrinsic long-range ferromagnetism but localized magnetic moments exist in the individual multilayer metallic VTe2 nanoplates. The localized moments give rise to the Kondo effect, evidenced by logarithmical increment of resistivity with decreasing temperature and negative magnetoresistance (NMR) regardless of the direction of magnetic field at temperatures below the resistivity minimum. The low-temperature resistivity upturn is well described by the Hamann equation, and the NMR at different temperatures, a manifestation of the magnetization of the localized spins, is well fitted to a Brillouin function for S = 1/2. Density functional theory calculations reveal that the localized magnetic moments mainly come from the interstitial vanadium ions in the VTe2 nanoplates. Our results will shed light on the study of magnetic properties, strong correlation, and many-body physics in two-dimensional metallic transition metal dichalcogenides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.