Abstract

The non-Hermitian skin effect is a distinctive phenomenon in non-Hermitian systems, which manifests as the anomalous localization of bulk states at the boundary. To understand the physical origin of the non-Hermitian skin effect, a bulk band characterization based on the dynamical degeneracy on an equal frequency contour is proposed, which reflects the strong anisotropy of the spectral function. In this paper, we report the experimental observation of a newly-discovered geometry-dependent non-Hermitian skin effect and dynamical degeneracy splitting in a two-dimensional acoustic crystal and reveal their remarkable correspondence by performing single-frequency excitation measurements. Our work not only provides a controllable experimental platform for studying the non-Hermitian physics, but also confirms the unique correspondence between the non-Hermitian skin effect and the dynamical degeneracy splitting, paving a new way to characterize the non-Hermitian skin effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call