Abstract

Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal (PT) symmetry show peculiar phenomena, such as the presence of an exceptional point (EP) at which the PT symmetry is broken and two resonant modes of the Hamiltonian become degenerate. Near the EP, the system could be more sensitive to external perturbations and this may lead to enhanced sensing. In this paper, we present experimental results on the observation of PT symmetry broken transition and the EP using a tunable superconducting qubit. The quantum system of investigation is formed by the two levels of the qubit and the energy loss of the system to the environment is controlled by a method of parametric modulation of the qubit frequency. This method is simple with no requirements for additional elements or qubit device modifications. We believe it can be easily implemented on multi-qubit devices that would be suitable for further exploration of non-Hermitian physics in more complex and diverse systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.