Abstract
Atomic Fermi gases provide an ideal platform for studying pairing and superfluid physics, using a Feshbach resonance between closed-channel molecular states and open-channel scattering states. Of particular interest is the strongly interacting regime. We show that the closed-channel fraction [Formula: see text] provides an effective probe for important many-body interacting effects, especially through its density dependence, which is absent from two-body theoretical predictions. Here we measure [Formula: see text] as a function of interaction strength and the Fermi temperature [Formula: see text] in a trapped 6Li superfluid throughout the entire Bardeen-Cooper-Schrieffer-Bose-Einstein-condensate crossover, in quantitative agreement with theory when important thermal contributions outside the superfluid core are taken into account. Away from the deep-BEC regime, the fraction [Formula: see text] is sensitive to [Formula: see text]. In particular, our data show [Formula: see text] with [Formula: see text] at unitarity, in quantitative agreement with calculations of a two-channel pairing fluctuation theory, and [Formula: see text] increases rapidly into the BCS regime, reflecting many-body interaction effects as predicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.