Abstract
The layer magnetisation reorientation transition (spin-flop, SF) was studied in an artificial layer antiferromagnet (AF), namely in MgO(0 0 1)/[ 57Fe(2.6 nm)/Cr(1.3 nm)] 20 epitaxial superlattice (SL) by synchrotron Mössbauer reflectometry and Kerr effect (SMOKE). The SF occurs simultaneously in the entire SL stack (bulk SF) in an increasing field of H SF=13 mT along the easy direction parallel to the layer magnetisations. It is recognised by the kink in the SMOKE loop and by the sharp up-rise of the AF Bragg peak in the delayed Mössbauer reflectivity. The moderate value of observed H SF is compared with estimations from a spin-chain model and interpreted as due to intraplane domain-wall motion during SF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.