Abstract

We observe characteristic atomic behaviors in the Bose–Einstein-condensation-Bardeen–Cooper–Schrieffer (BECBCS) crossover, by accurately tuning the magnetic field across the Feshbach resonance of lithium atoms. The magnetic field is calibrated by measuring the Zeeman shift of the optical transition. A non-monotonic anisotropic expansion is observed across the Feshbach resonance. The density distribution is explored in different interacting regimes, where a condensate of diatomic molecules forms in the BEC limit with the indication of a bimodal distribution. We also measure the three-body recombination atom loss in the BEC-BCS crossover, and find that the magnetic field of the maximum atom loss is in the BEC limit and gets closer to the Feshbach resonance when decreasing the atom temperature, which agrees with previous experiments and theoretical prediction. This work builds up a controllable platform for the study on the strongly interacting Fermi gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call