Abstract

Global observations of ocean swell, from satellite Synthetic Aperture Radar data, are used to estimate the dissipation of swell energy for a number of storms. Swells can be very persistent with energy e‐folding scales exceeding 20,000 km. For increasing swell steepness this scale shrinks systematically, down to 2800 km for the steepest observed swells, revealing a significant loss of swell energy. This value corresponds to a normalized energy decay in time β = 4.2 × 10−6 s −1. Many processes may be responsible for this dissipation. The increase of dissipation rate in dissipation with swell steepness is interpreted as a laminar to turbulent transition of the boundary layer, with a threshold Reynolds number of the order of 100,000. These observations of swell evolution open the way for more accurate wave forecasting models, and provide a constraint on swell‐induced air‐sea fluxes of momentum and energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.