Abstract

Field-emission energy distributions from the (100) facet of Ge exhibit a double peak. Comparison of the measured distributions with theory shows that the lower energy peak arises from valence band emission while the higher energy peak represents emission from a band of surface states overlapping the valence band. The field-emission energy distribution from the surface states is a maximum at 0.18 eV above the valence band edge. The surface of the emitter is found to be 4 kT degenerate n-type with an applied field of 3 × 10 7 V cm . This implies 6.3 × 10 12 surface states/cm 2 at the center of the clean, annealed (100) facet. The effect of the applied field is to broaden the surface state distribution. The degree of broadening can be accounted for by the Stark effect. Adsorption of contamination from the vacuum system ambient or geometric alteration of the surface from the annealed end form reduces the number of surface states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.