Abstract
We have observed kilohertz and sub-kilohertz resonance structures in RF-optical double resonance experiments of rare-earth-doped solids, when the frequency of the RF field is scanned across the hyperfine transitions while monitoring the resonant optical absorption of a CW laser. The effect is observed only when the laser spectral width is broad compared to the hyperfine structure. The observed line widths are apparently free of the inhomogeneous widths of hyperfine levels and the line shape has peculiar double peak structure. The effect is modelled with a resonance involving three atomic levels interacting with three electromagnetic fields, two optical and one RF, in a triangular or “delta’ configuration. While the ordinary optical-RF two-field resonance is limited by spin inhomogeneous width, the simultaneous excitation of three coupled transitions leads to narrow and highly nonlinear resonance structures that are not averaged by the inhomogeneous distribution of hyperfine transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.