Abstract

In this study, Raman spectroscopy has been used to evaluate the evolution of the structural modification of soot during oxidation processes at various preset temperatures up to 700 °C. Two types of well-characterized mini-CAST soot, representing black soot and brown soot, were examined. The major difference between the signals from the two types of soot was the higher photoluminescence (PL) signal for brown soot compared with black soot, in addition to some variations in the first-order Raman signatures such as oxygenated groups and their evolutions during thermal oxidation treatment. An interesting observation was the increase in the PL signal for brown soot at increasing temperatures up to 150 °C probably due to the formation of small oxidized polycyclic aromatic hydrocarbon and defects, followed by a decrease in the PL signal until the soot was fully oxidized. We also demonstrated that brown soot is prone to oxidation in ex situ measurements, a factor that should be considered in the Raman analysis of soot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call