Abstract
Squeezing of light's quantum noise requires temporal rearranging of photons. This again corresponds to creation of quantum correlations between individual photons. Squeezed light is a nonclassical manifestation of light with great potential in high-precision quantum measurements, for example, in the detection of gravitational waves [C. M. Caves, Phys. Rev. D 23, 1693 (1981)10.1103/PhysRevD.23.1693]. Equally promising applications have been proposed in quantum communication [H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory 24, 657 (1978)10.1109/TIT.1978.1055958]. However, after 20 years of intensive research doubts arose whether strong squeezing can ever be realized as required for eminent applications. Here we show experimentally that strong squeezing of light's quantum noise is possible. We reached a benchmark squeezing factor of 10 in power (10 dB). Thorough analysis reveals that even higher squeezing factors will be feasible in our setup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.