Abstract

Current-induced spin torques provide efficient data writing approaches for magnetic memories. Recently, the spin splitting torque (SST) was theoretically predicted, which combines advantages of conventional spin transfer torque (STT) and spin-orbit torque (SOT) as well as enables controllable spin polarization. Here we provide the experimental evidence of SST in collinear antiferromagnet RuO_{2} films. The spin current direction is found to be correlated to the crystal orientation of RuO_{2} and the spin polarization direction is dependent on (parallel to) the Néel vector. These features are quite characteristic for the predicted SST. Our finding not only presents a new member for the spin torques besides traditional STT and SOT, but also proposes a promising spin source RuO_{2} for spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call